利用大数据可以在大型商店的相关客户数据上进行快速高级分析,以发现新的客户关系,使我们更好地了解客户需求,优化价格、提供更好的产品和服务,并最终获得更高的利润。
这些分析所提供解决方案的质量不仅取决于被分析的大量原始数据,还和这些数据与企业数据仓库的集成度有关。例如,大数据应用程序可能包含所有客户购买产生详细的交易信息;然而,数据仓库仅包含实体标识(产品和服务名称)、摘要和聚合类别如地理(哪个区域的哪个商店),产品类别,销售地区,管理层次结构、定价数据,客户类别和概要文件等等。
在多数情况下,大数据应用的成功与其如何集成到您的企业数据仓库息息相关。本文将介绍几种方法,以便快速有效地完成这项工作。
大数据一体机
在今天的商业信息技术系统中,越来越多的数据被收集并存储。为了能够捕获、存储和分析这些数据,大多数企业转而寻求专门的硬件和软件解决方案。一个常见的解决方案是使用一个专用的硬件数据存储(有时称为一体机)加上配套的商业信息分析软件。一个例子就是IBM DB2 AnalyticsAccelerator (IDAA)。
配置一体机以适应大容量。一体机之所以能够执行高速查询,是因为它们具有专用的高容量磁盘存储阵列,允许大规模并行处理。这一过程只有在被引用的所有表都存储在一体机中时才能正常工作。如果你的大数据应用程序使用了多用户社区发布的跨许多商业实体和关系的复杂查询,你应该接受所有数据表都要存储在一体机中这一事实。
注意,您的数据仓库表也应该存在于你当前的数据库管理系统(DBMS)中;这样做为了使你的当前操作和常用仓库查询可以更快地在DBMS中执行。
限制对一体机的初始访问。大多数大数据应用程序被安装来支持特定的用例。这些用例目的是使分析能够有助于立即降低成本或提高利润。最好是限制这些用户访问一体机,尤其是在他们使用标准的商业智能(BI)工具来构造查询时。为大数据所定制BI工具允许用户以图形化的形式组织SQL语句,而后在后台执行实际的SQL查询。这允许软件设计师通过正确的SQL语法来使用一体机。
另一个限制一体机只能被个别用户访问的原因与性能调优有关。最初交付给客户的大数据一体机并不具有性能调优的能力。这是因为人们认为那些先进的软件和硬件一体机速度极快,性能调优没有存在的必要。现在,随着越来越多的用户获得大数据一体机存储和访问路径查询的经验,新交付的一体机出现了性能调优的选项。限制一体机访问可以使你的一体机运维团队在一个相对稳定的环境中进行一体机的性能调优。
您需要确定如何处理被更改的数据。为了使一体机返回有用的信息,数据必须是最新的。这里所说的数据包括数据仓库数据,这些数据我们也建议您实例化到一体机中去。然而,由于大多数数据仓库每天都执行提取-转换-装载(ETL)流程,你现在必须协调这些数据,以便其顺利加载到一体机中。通常ETL最后一步执行数据库应用程序,将转换后的数据加载到数据仓库中。现在,ETL有一个额外的步骤,将数据加载到一体机中。没有将这些新数据加载到一体机中是十分危险的,你的查询操作访问数据仓库中的表,会返回一个查询结果,而当查询操作访问的是一体机表数据时,返回的又是另一个结果,两个结果无法保持一致性。
解决这个问题的最简单方法是在数据仓库ETL过程中添加一步,即当数据加载数据库后立即加载到一体机中。然而,会有很多数据加载选项。假如ETL过程是在表中追加记录,而不是覆盖整个表会怎样?一体机加载过程通常有一个“加载被更改数据”的选项,该选项允许一体机只加载那些最近被更改过的数据。这种方法也适用于分区表,一次只有一个分区被加载。
让你的数据仓库做好准备
升级数据仓库体系结构。企业数据仓库已经成为商业智能查询的平台。数据仓库业务分析师查询数据仓库数据以供分析;所以仓库已经包含类别和维度表用于构造子集,合计和聚合。这样的类别数据通常存储在产品类别、客户类型、地理区域等维度表中。
考虑到大数据的用例(BI查询随着大数据的实现已经被定义为高回报的),检查你的仓库,以确保仓库中存在所有必须的类别和维度表,且表中数据正确。另外你可能需要进一步检查以确定原始源系统数据是正确和最新的。检查你的企业数据字典和元数据以确认数据元素定义的正确性和相关性。
加快ETL处理过程,特别是数据仓库的数据加载过程。随着查询数量和复杂性的增加,BI用户将需求更多地使用大数据存储库。然而,由于大数据需要与数据仓库集成,这自然转化为更快的数据处理要求。分析整个数据转换链,包括源数据的采集、数据清理和转换,以及最终数据仓库装载过程。你应该考虑升级相关网络和服务器来应对数据量的增加。对旧的、过时的仓库数据进行分析,清洗或归档不再使用的数据。审查数据加载程序,为速度提升做好准备,这包括并行表加载过程,以及制定相应分区方案来允许原有数据被查询的同时加载新的数据。
为新岗位培训员工。大数据的应用程序和企业数据仓库完成集成后将会共同成长。这将改变数据仓库运维人员的工作内容。仓库分析师必须扩大视野,并意识到现在的数据存储在一个或多个大数据的应用程序中。他们必须去熟悉任何新的BI分析软件,以帮助用户实现报表和查询。
随着大数据消费的扩张,性能将成为一个问题。企业急需数据科学家,这些科学家了解数据以及数据库管理系统和一体机,并能对其进行监视和性能优化。最后,这些专家在数据来源和操作系统领域具备渊博的学识,这将帮助企业确定哪些数据应该被添加到当前数据仓库和一体机中。
总结
很明显,实现大数据应用程序需要大量的硬件、软件和人力资源。为了确保此应用程序和数据仓库的集成,你要考虑以下的几条建议:
- 配置高容量的一体机,并计划将你的整个数据仓库部署其中;
- 限制一体机的使用人数,让分析师熟悉数据和典型的BI查询;
- 审查当前计划,清除过时数据;
- 加速ETL过程,特别是数据仓库的数据加载过程;
- 最后,让你的员工做好准备,以胜任新的大数据环境下的工作。
我们一直都在努力坚持原创.......请不要一声不吭,就悄悄拿走。
我原创,你原创,我们的内容世界才会更加精彩!
【所有原创内容版权均属TechTarget,欢迎大家转发分享。但未经授权,严禁任何媒体(平面媒体、网络媒体、自媒体等)以及微信公众号复制、转载、摘编或以其他方式进行使用。】
微信公众号
TechTarget
官方微博
TechTarget中国
翻译
TechTarget特邀编辑。北京邮电大学计算机科学与技术专业硕士。熟悉软件开发流程,对系统管理,网络配置,数据库应用等方面有深入的理解和实践经验。现就职于IBM(中国)投资有限公司,从事IBM服务器相关软件的开发工作。业余时间喜欢游泳登山,爱健身,喜欢结交朋友。
相关推荐
-
超越RDBMS:数据仓库与数据湖、数据集市
现在企业从各种来源收集的大量数据已经远远超出传统关系学数据库可处理的范畴。这引发数据仓库与数据湖的问题:何时使 […]
-
对SAP HANA数据库涉嫌知识产权盗窃的指控存疑
Enterprise Applications Consultin公司负责人Joshua Greenbaum表 […]
-
数据货币将决定企业成败
在2017年3月McKinsey公司对500多名高管的调查显示,越来越多的企业使用数据和分析来推动增长,但目前 […]
-
在HANA上实施SAP BW要做哪些准备?
在HANA上实施SAP BW可以帮助公司利用到HANA的速度和性能优势。不过,CIO及技术团队首先要注意一些关键问题。