Instagram可以说是网拍App的始祖级应用,也是当前最火热的拍照App之一,Instagram的照片数量已经达到3亿,而在Instagram里,我们需要知道每一张照片的作者是谁,下面就是Instagram团队如何使用Redis来解决这个问题并进行内存优化的。
首先,这个通过图片ID反查用户UID的应用有以下几点需求:
- 查询速度要足够快
- 数据要能全部放到内存里,最好是一台EC2的 high-memory 机型就能存储(17GB或者34GB的,68GB的太浪费了)
- 要合适Instagram现有的架构(Instagram对Redis有一定的使用经验,比如这个应用)
- 支持持久化,这样在服务器重启后不需要再预热
Instagram的开发者首先否定了数据库存储的方案,他们保持了KISS原则(Keep It Simple and Stupid),因为这个应用根本用不到数据库的update功能,事务功能和关联查询等等牛X功能,所以不必为这些用不到的功能去选择维护一个数据库。
于是他们选择了Redis,Redis是一个支持持久化的内存数据库,所有的数据都被存储在内存中(忘掉VM吧),而最简单的实现就是使用Redis的String结构来做一个key-value存储就行了。像这样:
SET media:1155315 939 GET media:1155315 > 939 |
其中1155315是图片ID,939是用户ID,我们将每一张图片ID为作key,用户uid作为value来存成key-value对。然后他们进行了测试,将数据按上面的方法存储,1,000,000数据会用掉70MB内存,300,000,000张照片就会用掉21GB的内存。对比预算的17GB还是超支了。
其实这里我们可以看到一个优化,我们可以将key值存成纯数字,经过实验,内存占用会降到50MB,总的内存占用是15GB,是满足需求的,但是Instagram后面的改进任然有必要
于是Instagram的开发者向Redis的开发者之一Pieter Noordhuis询问优化方案,得到的回复是使用Hash结构。具体的做法就是将数据分段,每一段使用一个Hash结构存储,由于Hash结构会在单个Hash元素在不足一定数量时进行压缩存储,所以可以大量节约内存。这一点在上面的String结构里是不存在的。而这个一定数量是由配置文件中的hash-zipmap-max-entries参数来控制的。经过开发者们的实验,将hash-zipmap-max-entries设置为1000时,性能比较好,超过1000后HSET命令就会导致CPU消耗变得非常大。
于是他们改变了方案,将数据存成如下结构:
HSET “mediabucket:1155” “1155315” “939” HGET “mediabucket:1155” “1155315” > “939” |
通过取7位的图片ID的前四位为Hash结构的key值,保证了每个Hash内部只包含3位的key,也就是1000个。
再做一次实验,结果是每1,000,000个key只消耗了16MB的内存。总内存使用也降到了5GB,满足了应用需求。
同样的,这里我们还是可以再进行优化,首先是将Hash结构的key值变成纯数字,其次是将Hash结构中的key值变成三位数,如下所示。经过实验,内存占用量会降到10MB,总内存占用为3GB
HSET “1155” “315” “939” HGET “1155” “315” > “939” |
优化无止境,只要肯琢磨。希望你在使用存储产品时也能如此爱惜内存。
我们一直都在努力坚持原创.......请不要一声不吭,就悄悄拿走。
我原创,你原创,我们的内容世界才会更加精彩!
【所有原创内容版权均属TechTarget,欢迎大家转发分享。但未经授权,严禁任何媒体(平面媒体、网络媒体、自媒体等)以及微信公众号复制、转载、摘编或以其他方式进行使用。】
微信公众号
TechTarget
官方微博
TechTarget中国
作者
相关推荐
-
2017年1月数据库流行度排行榜 新年新气象
新年新气象,数据库知识网站DB-engines最近更新了2017年1月份数据库流行度榜单。TechTarget数据库网站将与您分享1月份的榜单排名情况,让我们拭目以待。
-
创建NoSQL数据建模符号 企业架构师亲自上阵
新兴的NoSQL数据风格促使创新的应用程序快速发展,但NoSQL同时也带来了挑战。NoSQL系统能够快速投入生产,有时甚至根本不用创建任何的前期模式。
-
深入理解Amazon DynamoDB NoSQL云数据库服务
Amazon DynamoDB NoSQL云数据库即服务主要为跨移动设备、网页web端、游戏、数字营销和物联网领域的应用提供支持。
-
2016年10月数据库流行度排行榜 两组数据库棋逢对手
数据库知识网站DB-engines更新了2016年10月份的数据库流行度排行榜,10月份的榜单又有哪些变化,哪些惊喜呢?