在NoSQL的许多产品中,我们通过benchmark可以看到的都是写性能极度提升,而读性能并没有太大的涨幅甚至相对传统RDBMS还有下降。比如Cassandra,MongoDB这两个NoSQL的杰出代表。究其原因,我们可能会想到是因为当前UGC模式已经发展到白热化,用户产生内容导致读写比已经接近或者说小于1:1。
但是我认为这绝不是个中真实原因。
1、缓存导致存储的raw read效率不再重要
真实原因是我们对读的优化已经做得足够多了,数据存储我们使用Memcached,TokyoTyrant/TokyoCabinet等缓存存储,页面及文件缓存我们使用squid,nginx proxy_cache等存储,都可以达到非常好的读缓存效果,如果数据即时性要求不高,或者说缓存设计合理(读写皆缓存),缓存命中率会足够的高,因此我们无需再过分优化底层存储的raw read效率。
试想缓存层如果有高达99%以上的命中率,那么相对于raw read设备,我们的亿级的数据读取请求就轻松的变成百万级请求,上千并发轻松变成数十并发。当然,这需要我们的缓存层足够靠谱。比如nginx proxy_cache 可以多较多,这时候宕掉一台不至于使全部读请求穿透到底层存储。至于多了之后purge等操作如何全面的执行,不在本文讨论之列。
综上,raw read效率不需要再提升,因为其需求已经被缓存层大量取代。
2、无法取代的raw write功能
看到缓存减轻raw read的工作量,我们可以在想是否有方法可以减轻raw write的工作量。答案是不可以的。如果您认为可以。可以留言探讨。既然raw write的工作量是不可取代的,那么我们大概可以有两种方法提升写操作的性能。
3.1、sharding
通过对数据的分区,我们可以将数据进行分布式的存储,于是每个结点只会分配到一部分的raw write请求。这样相当于公司员工效率不变,多招了人。但由于结点的增多,其中有结点出问题的效率也大大增加。于是我们不得不做一些replication操作来提供HA方案。
3.2、提升raw write效率
如上面的举例,我们只能选择提升raw write效率来实现总体(包括cache层)更好的读写效率。这里通常使用的方法就是将随机的写操作在内存中进行序列化,并在一定量后进行顺序的flush到磁盘操作。所谓将内存当成硬盘,将硬盘当作磁带就是这个意思。所以我们看到前面说到的很多NoSQL产品着重对写操作进行了优化,而对读性能提升并不明显,甚至不惜以更慢的读作为提升写操作性能的代价。
4、总结
由于读性能可以通过设置合理的缓存策略来减少raw read操作的数量。因此不仅对读写比不大的情形需要着重进行写操作的优化,对读写比大的情况下,仍旧需要优化写性能而非读性能。
我们一直都在努力坚持原创.......请不要一声不吭,就悄悄拿走。
我原创,你原创,我们的内容世界才会更加精彩!
【所有原创内容版权均属TechTarget,欢迎大家转发分享。但未经授权,严禁任何媒体(平面媒体、网络媒体、自媒体等)以及微信公众号复制、转载、摘编或以其他方式进行使用。】
微信公众号
TechTarget
官方微博
TechTarget中国
作者
相关推荐
-
创建NoSQL数据建模符号 企业架构师亲自上阵
新兴的NoSQL数据风格促使创新的应用程序快速发展,但NoSQL同时也带来了挑战。NoSQL系统能够快速投入生产,有时甚至根本不用创建任何的前期模式。
-
深入理解Amazon DynamoDB NoSQL云数据库服务
Amazon DynamoDB NoSQL云数据库即服务主要为跨移动设备、网页web端、游戏、数字营销和物联网领域的应用提供支持。
-
SQL和NoSQL数据库设计之争
企业收集了很多大规模增长的松散结构化数据,Hadoop,Spark以及其他新技术处理这些数据非常有助于改善商业智能分析效率。
-
深入解读Hadoop十周年——展望篇
本文以技术篇、产业篇、应用篇、展望篇四部分带领大家深入解读Hadoop的昨天、今天和明天,一起憧憬下一个十年。