二、不充份的连接条件:
例:表card有7896行,在card_no上有一个非聚集索引,表account有191122行,在 account_no上有一个非聚集索引,试看在不同的表连接条件下,两个SQL的执行情况:
select sum(a.amount) from account a, card b where a.card_no = b.card_no |
(20秒)
将SQL改为:
select sum(a.amount) from account a, card b where a.card_no = b.card_no and a. account_no=b.account_no |
(< 1秒)
分析:
在第一个连接条件下,最佳查询方案是将account作外层表,card作内层表,利用card上的索引,其I/O次数可由以下公式估算为:
外层表account上的22541页+(外层表account的191122行*内层表card上对应外层表第一行所要查找的3页)=595907次I/O
在第二个连接条件下,最佳查询方案是将card作外层表,account作内层表,利用account上的索引,其I/O次数可由以下公式估算为:
外层表card上的1944页+(外层表card的7896行*内层表account上对应外层表每一行所要查找的4页)= 33528次I/O
可见,只有充份的连接条件,真正的最佳方案才会被执行。
总结:
1.多表操作在被实际执行前,查询优化器会根据连接条件,列出几组可能的连接方案并从中找出系统开销最小的最佳方案。连接条件要充份考虑带有索引的表、行数多的表;内外表的选择可由公式:外层表中的匹配行数*内层表中每一次查找的次数确定,乘积最小为最佳方案。
2.查看执行方案的方法– 用set showplanon,打开showplan选项,就可以看到连接顺序、使用何种索引的信息;想看更详细的信息,需用sa角色执行dbcc(3604,310,302)。
三、不可优化的where子句
1.例:下列SQL条件语句中的列都建有恰当的索引,但执行速度却非常慢:
select * from record where substring(card_no,1,4)=’5378′ |
(13秒)
select * from record where amount/30< 1000 |
(11秒)
select * from record where convert(char(10),date,112)=’19991201′ |
(10秒)
分析:
where子句中对列的任何操作结果都是在SQL运行时逐列计算得到的,因此它不得不进行表搜索,而没有使用该列上面的索引;如果这些结果在查询编译时就能得到,那么就可以被SQL优化器优化,使用索引,避免表搜索,因此将SQL重写成下面这样:
select * from record where card_no like ‘5378%’ |
(< 1秒)
select * from record where amount < 1000*30 |
(< 1秒)
select * from record where date= ‘1999/12/01’ |
(< 1秒)
你会发现SQL明显快起来!
2.例:表stuff有200000行,id_no上有非群集索引,请看下面这个SQL:
select count(*) from stuff where id_no in(‘0’,’1’) |
(23秒)
分析:
where条件中的’in’在逻辑上相当于’or’,所以语法分析器会将in (‘0’,’1′)转化为id_no =’0’ or id_no=’1’来执行。我们期望它会根据每个or子句分别查找,再将结果相加,这样可以利用id_no上的索引;但实际上(根据showplan),它却采用了”OR策略”,即先取出满足每个or子句的行,存入临时数据库的工作表中,再建立唯一索引以去掉重复行,最后从这个临时表中计算结果。因此,实际过程没有利用id_no上索引,并且完成时间还要受tempdb数据库性能的影响。
实践证明,表的行数越多,工作表的性能就越差,当stuff有620000行时,执行时间竟达到220秒!还不如将or子句分开:
select count(*) from stuff where id_no=’0′ select count(*) from stuff where id_no=’1′ |
得到两个结果,再作一次加法合算。因为每句都使用了索引,执行时间只有3秒,在620000行下,时间也只有4秒。或者,用更好的方法,写一个简单的存储过程:
create proc count_stuff as declare @a int declare @b int declare @c int declare @d char(10) begin select @a=count(*) from stuff where id_no=’0′ select @b=count(*) from stuff where id_no=’1′ end select @c=@a+@b select @d=convert(char(10),@c) print @d |
直接算出结果,执行时间同上面一样快!
总结:
可见,所谓优化即where子句利用了索引,不可优化即发生了表扫描或额外开销。
1.任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时要尽可能将操作移至等号右边。
2.in、or子句常会使用工作表,使索引失效;如果不产生大量重复值,可以考虑把子句拆开;拆开的子句中应该包含索引。
3.要善于使用存储过程,它使SQL变得更加灵活和高效。
从以上这些例子可以看出,SQL优化的实质就是在结果正确的前提下,用优化器可以识别的语句,充份利用索引,减少表扫描的I/O次数,尽量避免表搜索的发生。其实SQL的性能优化是一个复杂的过程,上述这些只是在应用层次的一种体现,深入研究还会涉及数据库层的资源配置、网络层的流量控制以及操作系统层的总体设计。
我们一直都在努力坚持原创.......请不要一声不吭,就悄悄拿走。
我原创,你原创,我们的内容世界才会更加精彩!
【所有原创内容版权均属TechTarget,欢迎大家转发分享。但未经授权,严禁任何媒体(平面媒体、网络媒体、自媒体等)以及微信公众号复制、转载、摘编或以其他方式进行使用。】
微信公众号
TechTarget
官方微博
TechTarget中国
作者
相关推荐
-
甲骨文自治数据库亮相 带来云计算新希望
早前甲骨文还不在云计算公司之列,而现在该公司正在迅速弥补其失去的时间。甲骨文的云计算核心是甲骨文自治数据库(O […]
-
2017年12月数据库流行度排行榜 定格岁末排名瞬间
数据库知识网站DB-engines最近更新的2017年12月份数据库流行度排名情况是否能提供更多的看点呢?TechTarget数据库网站将与您分享12月份的榜单排名情况,让我们拭目以待。
-
2017年11月数据库流行度排行榜 半数以上数据库积分减少
数据库知识网站DB-engines更新了2016年11月份的数据库流行度排行榜。TechTarget数据库网站将与您一同关注11月份的榜单排名情况。
-
控制合约 不再畏惧Oracle
许多公司都与Oracle有无限制授权协议,他们害怕离开这个协议,所以就证明他们在使用Oracle的软件,即使因为需求单独购买部分授权许可也可能总体是省钱的。